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The Effect of Growth and Curvature on Pattern
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Based on first principles, we derive a general model to describe the spa-
tio-temporal dynamics of two morphogens. The diffusive part of the model
incorporates the dynamics, growth and curvature of one- and two-dimen-
sional domains embedded in R

3. Our generalized diffusion process includes
spatio-temporal varying diffusion coefficients, advection, and dilution terms.
We present specific examples by analyzing a third order activator–inhibi-
tor mechanism for the kinetic part. We carry out illustrative numerical sim-
ulations on two-dimensional growing domains having different geometries.
Comparisons with former results on fixed domains show the crucial role of
growth and curvature of pattern selection. Evidence is given that both effects
might be biologically relevant in explaining the selection of some observed
patterns and in changing or enhancing their stability.
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1. INTRODUCTION

Since the seminal paper by Turing [31], reaction–diffusion models have
been proposed to account for pattern formation in a wide variety of bio-
logical situations (for a review see [20]). The simplest version of the model
consists of two coupled non-linear reaction–diffusion equations describ-
ing the spatio-temporal evolution of the concentration of two substances
(termed morphogens by Turing). Turing showed that for conditions under
which the reaction kinetics admitted a linearly stable spatially uniform
steady state, it was possible for diffusion to cause an instability, leading
to spatially varying profiles in morphogen concentration. These are the
Turing patterns and they arise from the so called diffusion-driven instabil-
ity. It has been shown that these models exhibit a variety of spatial pat-
terns consistent with those observed in a number of biological systems.
However, the identification of morphogens forming patterns via the Turing
instability has proved to be elusive so far, although patterns due to a diffu-
sion-driven instability have been observed experimentally in some chemical
systems [7,12] and morphogens have been identified in some systems [29].

From a theoretical viewpoint, the hypothesis that spatial patterns in
early development arise via a Turing instability has been criticized for
a number of reasons. For example, Turing patterns are sensitive to ini-
tial conditions and to perturbations in parameter values. However, it has
been shown that boundary conditions can have a profound effect on mode
selection and robustness of patterning [2,13], at least in the one-dimen-
sional case. It has also been shown, again for the one-dimensional case,
that robustness can be enhanced by considering growth of the domain
[10].

The original Turing paper did not take into account the effect of
domain growth and changes in geometry, yet these processes are a vital
part of the development of any organism, leading to changes in pattern-
ing that are not simply quantitative, for example, intensity of color, num-
ber of stripes, but are also qualitative, for instance, changes in type and
spatial location of stripes or spots. One striking example, which has been
often cited recently, is the coat pattern of the angelfish Pomacanthus impe-
rator [16].

An important question arises then, as to whether the appearance of
some patterns, as well as their stability (instability) can be understood by
taking into account the growth of the organism. Several models have been
proposed for this and we now briefly review them.

Murray [20] found that changes in spatial scale can produce dra-
matic changes in the patterns exhibited by the Turing model. In [2] the
effect of a growing domain is incorporated by choosing a time-dependent
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scaling factor. In [16] the authors proposed a reaction-diffusion system
to describe the changes in the stripe patterns of Pomacanthus as the fish
grows. In particular, they showed that the reaction–diffusion system went
through a frequency-doubling cascade which preserved the pattern wave-
length as the domain grew, consistent with the patterning observed on the
fish. Meinhardt et al. have also studied several consequences of growth
in pattern formation (see [19] and references therin). In this work a com-
parison between activator–inhibitor and activator–substrate models is pre-
sented.

Varea et al. [32] studied the evolution of Turing patterns in a two-
dimensional domain with curved boundaries. By imposing specific chem-
ical concentrations on the boundary (simulating a chemical source there)
they reproduced some aspects of the developing pigmentation patterns in
Pomacanthus. In a subsequent paper, Varea et al. [33] investigated the
effect of curvature on pattern selection in a Turing model on a fixed
sphere. Their simulations show the emergence of different symmetries on
this surface and are reminiscent of skeletal patterns in radiolaria. Turing
patterns on a growing sphere were recently investigated numerically by
Chaplain et al. [8] in an application to metastasis in a growing tumor.
Liaw et al. [17] simulated a Turing model on part of a spherical surface
and showed that they could reproduce various patterns that are exhibited
on the hard wings of lady beetles.

The case of domain growth being directly controlled by one of the
chemicals in the Turing model has been studied on a simple one-dimen-
sional domain [11] and also on complex two-dimensional surfaces [15].
In the latter, the authors show possible applications to morphogenesis of
single-celled chlorophyte algae which exhibit branching processes, whorl
formation in Acetabularia and repeated dichotomous branching in Micras-
terias.

This brief review shows that understanding the effects of growth and
geometry on Turing patterns is currently an issue of importance. There-
fore, in this paper we consider a general growing two-dimensional sur-
face and investigate, numerically, the effect on the stability of patterns of
growth and geometry, particularly the growth rate and the curvature of
the domain. Note that the work by Crampin et al. [10] already addresses
the effects rate and functional form at least for simple one-dimensional
domains.

The main purpose of the paper is to provide a general framework
for the study of pattern formation using reaction diffusion equations in
which the effects of both growth and geometry are taken into account.
The paper is organized as follows. In Section 2 we derive the model
for growing and curved one- and two-dimensional domains. We begin
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by considering the diffusive part of the process and then we simply add
the nonlinear kinetic interaction terms and write down the equations in
non- dimensional form. We then study the special case of isotropic growth
and include some remarks on the diffusion-driven instability on fixed two-
dimensional domains. We conclude by listing some typical geometries and
growth functions. In Section 3 we restrict ourselves to a particular model,
which includes third order kinetics. Here we carry out the Turing bifurca-
tion analysis for a fixed domain in detail. In Section 4 we present several
numerical simulations in order to investigate the differences in the pattern
formation process on different surfaces (e.g., the square and the cone) and
growing domains. In Section 5 we discuss a number of open problems in
this area.

2. CONSTRUCTION OF THE MODEL

2.1. Diffusion in Growing and Curved Domains

To derive the appropriate form for a system of coupled reaction–diffu-
sion equations on a growing domain, we first parametrize the domain. For
the one-dimensional case, let us consider the parameter s ∈ [0,1] (the spa-
tial parameter) and define the mapping ψt , such that for every time t�0,

ψt : [0,1]−→R
3, ψt (s)≡X(s, t)=


x(s, t)y(s, t)

z(s, t)


 . (1)

X(s, t) represents a curve in space parameterized by s, for each time t .
This curve, which we denote Ct , can be used to represent a one-dimen-
sional spatial domain which grows in time. It will be convenient for later
use to introduce at this stage the arc length as a function of s and t ,

σ(s, t)=
∫ s

0
|Xs(s′, t)|ds′. (2)

For two-dimensional growth we asume that for every time t � 0, there
is a surface St parametrized by (ζ, η)∈�0 ⊂R

2 that models the shape and
size of the growing domain (the organism). Hence, there is a mapping

ψt :�0 ⊂R
2 −→R

3, ψt (ζ, η)≡X(ζ, η, t)=

x(ζ, η, t)y(ζ, η, t)

z(ζ, η, t)


 , (3)

that defines a two-dimensional surface St embedded in R3.
Before deriving the equations for the reaction–diffusion system on the

growing domains parametrized as above, we make the following simplify-
ing assumptions:



The Effect of Growth and Curvature on Pattern Formation 1097

(a) For every fixed t � 0, the growth function ψt :�0 ⊂ R
p −→ R

3, for
p=1,2 is C2, and such that if �0 is a fixed domain (which could
be the whole space R

p), then �t ≡ψt(�0) models the geometry of
the growing organism. That is ψt(�0) is the region occupied by
the organism at time t and we also assume it is differentiable with
respect to this variable. In addition, we assume that the mapping
is continuously differentiable on the parameter t .

(b) When p=1, Eq. (1) defines a regular curve Ct embedded in R
3 for

every t , that is,

Xs(s, t) �=0 (4)

for all s ∈ [0,1]=�0 and t � 0.
When p=2, Eq. (3) defines a regular surface St in R3, that is,

Xζ ×Xη �=0, (5)

for all (ζ, η)∈�0 and all t � 0.

Now, suppose that φ denotes the concentration (molecules per unit
volume) of a chemical substance, depending on (X, t)× R

3 × [0,∞), We
make the standard assumption that the morphogen diffuses according to
Fick’s law, which states that the flux vector J of the substance molecules
is proportional to the concentration gradient, i.e.,

J =−D∇φ,

where D � 0 is the diffusion coefficient. Consider a region in space �,
and notice that for a surface element dS on ∂� with outer unit normal
n,−J ·ndS represents the flow of particles out through the element. Then,
as usual, by Fick’s law we can write

d
dt

∫
�
φdX=D

∫
∂�

∇φ ·n dS. (6)

In our models, φ will denote the concentration of the morphogens per
unit length or per unit surface. The domain of integration in Eq. (6) is
a domain � lying on the curve Ct or on the surface St , and consequently
depends on time. The spatial diffusion takes place in the local variables on
the surface or the curve, and we have to take into account both the geom-
etry of the domain and the fact that it varies with time. In other words,
the gradient that appears in Fick’s law refers to the intrinsic gradient on
the curve (surface).
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For the case of two interacting chemicals with concentrations u and
v, Eq. (6) should be expressed in terms of the concentration vector w =
(u, v)T and the 2×2 constant matrix of diffusivities D =Dij ,

d
dt

∫
�

w dX=D
∫
∂�

∇w ·n dS+
∫

�
R(w)dX, (7)

where R(w)= (f (u, v), g(u, v))T is the reaction kinetics vector. We shall
not consider cross diffusion, and the matrix of diffusivities will be regarded
as the diagonal matrix D=diag(D1,D2) with Di positive constants. Thus,
for the derivation of the diffusive part of the model, it will be sufficient
to deal with Eq. (6) for only one substance, and we shall incorporate the
kinetic functions later, which will be the only coupling terms in our equa-
tions.

2.1.1. One-Dimension

Consider a domain which grows in onedimension, parametrized as
in Eq. (1). Let φ = φ(X(s, t), t) be the morphogen concentration per
unit length, and consider a segment of the curve Ct , defined by �(t)≡
ψt([s1, s2], t), where [s1, s2] ⊂ [0,1] and ψt is the growth function. Making
a change of variables we have that

d
dt

∫ s2

s1

φ(X(s, t), t)σs(s, t)ds=D
∫ s2

s1

∂s

(
∇Xφ · |Xs |

|Xs |
)

ds.

Here σs(s, t)=|Xs |. We denote φ̃(s, t)≡φ(X(s, t), t), and compute the
derivatives inside the integrals to obtain

∫ s2

s1

(
φ̃t σs + φ̃σst −D

(
φ̃ss

σs
− σss

(σs)2
φ̃s

))
ds=0,

which holds for every interval [s1, s2]⊂ (0,1) and every t�0. Dropping the
tildes for notational convenience we obtain the following equation on the
fixed coordinates s and t

φt = D

(σs)2

(
φss − σss

σs
φs

)
− σst

σs
φ, (8)

which can also be expressed as

φt = D

σs
∂s

(
1
σs
φs

)
− ∂t (lnσs)φ.
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Therefore, for the case of the morphogens, with concentrations u and
v, respectively, which diffuse on the time-varying curve Ct parametrized by
s, the corresponding equations are:

ut = D1

(σs)2

(
uss − σss

σs
us

)
− σst

σs
u

vt = D2

(σs)2

(
vss − σss

σs
vs

)
− σst

σs
v. (9)

Here Di > 0 are the constant diffusion coefficients and σ(s, t) is deter-
mined by the growth function. Note that all the terms on the right-hand
side of (9) are space–time dependent. Their physical interpretation is as
follows:

Di

(σs)2
(·)ss = diffusion term, −Di σss

(σs)3
(·)s =advection term, and

−σst
σs
(·)=dilution term, for i=1,2.

2.1.2. Two Dimensions

Consider the surface St embedded in R
3 and described in terms of

the parameters (ζ, η)∈ �0 ⊂ R
2 for each value of t by Eq. (3). As usual

we define

h1:=|Xζ |, h2 ≡|Xη|,
and the normal vector is given by N(ζ, η, t)=Xζ ×Xη �=0, since we assume
St is regular for each t . We also have the expression for the metric on the
surface, which is given by

dl2 =dx2 +dy2 +dz2 =gij dxi dxj ,

where x1 = ζ, x2 =η, and gij =Xxi ·Xxj , i, j =1,2. We denote

E=|Xζ |2 =g11, F =Xζ ·Xη=g12, G=|Xη|2 =g22.

Here we are assuming that the parametrization (ζ, η) is such that it
defines an orthogonal system on St , that is,

Xζ ·Xη=0, (10)

for each time t . Hence the matrix G of coefficients of the first fundamen-
tal form is

G=
(
g11 g12
g21 g22

)
=
(
h2

1 0
0 h2

2

)
,
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with inverse

G−1 = 1
g11g22

(
g22 −g21

−g12 g11

)
= 1

h2
1h

2
2

=
(
h2

2 0
0 h2

1

)
.

Clearly |N(ζ, η, t)| = h1h2 at each time t . Now, let φ be the morpho-
gen concentration of a substance on the surface St , that is, φ=φ(X, t) is
the number of molecules per unit area at time t , and X ∈St . Consider a
region �(t) on the surface, where diffusion takes place, and assume �(t)=
ψt(�0) for some open, bounded domain �0 ∈R

2, with ∂�0 smooth. Then
the diffusion process for φ on �(t) is given by

d
dt

∫
�(t)

φ(X, t)dSX=D
∮

∂�(t)

∇φ ·n dl. (11)

Here ∂�(t) is a regular curve on the surface and n is the unit vector
normal to the curve, which lies on the tangent plane. We suppose that the
curve ∂�(t) is the image under the growth function of ∂�0, a closed curve
in R

2, and assume that the former is parametrized by (ζ0(s), η0(s)). Let
τ ∈ R

3 be the tangent vector to ∂�(t). Therefore, τ = ζ ′
0Xζ + η′

0Xη, with
|τ |2 = h2

1ζ
′2
0 + h2

2η
′2
0 �= 0. In (11), n lies on the tangent plane, |n| = 1 and

n · τ =0; hence n =αXη+βXζ , where

α=−h1

h2

ζ ′
0

|τ | , and β= h2

h1

η′
0

|τ | . (12)

Changing variables in the line integral along ∂�(t) and applying Stokes
theorem on the integral along the curve ∂�0 ⊂R

2 we obtain∮
∂�(t)

∇φ ·n dl =
∮
∂�0

∇φ · (αXη+βXζ )|τ |ds

=
∮
∂�0

(
−h1

h2
∂ηφ

)
dζ +

(
h2

h1
∂ζ φ

)
dη

=
∮

�0

[(
h2

h1
∂ζ φ

)
ζ

+
(
h1

h2
∂ηφ

)
φ

]
dζdη.

The last formula is valid for any time t�0. Now if we change variables
on the left-hand side of Eq. (11) we get

d
dt

∫
�(t)

φ(X, t)dSX = d
dt

∫
�0

φ(X(ζ, η, t), t)h1h2 dζ dη

=
∫

�0

((φt +∇φ ·Xt)h1h2 +φ(h1h2)t )dζdη.
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Denote φ̃(ζ, η, t)≡ φ(X(ζ, η, t), t). Clearly φ̃t = φt + ∇φ · Xt and φ̃ζ =
∂ζ φ, φ̃η= ∂ηφ. Therefore, the molecular diffusion mechanism expressed by
Eq. (11) can be written as∫

�0

φ̃th1h2 + φ̃(h1h2)t −D
[(

h2

h1
φ̃ζ

)
ζ

+
(
h1

h2
φ̃η

)
η

]
dζdη=0.

As �0 is arbitrary, and dropping the tildes for notational convenience,
we obtain

φt =D�sφ−φ∂t (ln(h1h2)). (13)

where

�sφ= 1
h1h2

[(
h2

h1
φζ

)
ζ

+
(
h1

h2
φη

)
η

]
, (14)

is the Laplace–Beltrami operator, which is the intrinsic Laplace operator
in manifolds. Hence the equations describing the case of two morphogens,
with concentration u and v, respectively, diffusing on the surface St are

ut =D1�su− ∂t (ln(h1h2))u

vt =D2�sv− ∂t (ln(h1h2))v, (15)

where u=u(ζ, η, t), v=v(ζ, η, t), (ζ, η)∈�0, t ∈ [0,∞), and Di >0 with i=
1,2 are the constant diffusion coefficients.

2.2. The Full Model

Recalling the analysis of the previous section, the reaction–diffusion
model we wish to study takes the form
For one dimension:

ut = D1

(σs)2

(
uss − σss

σs
us

)
− σst

σs
u+f (u, v)

vt = D2

(σs)2

(
vss − σss

σs
vs

)
− σst

σs
v+g(u, v). (16)

For two dimensions:

ut = D1
su− ∂t (ln(h1h2))u+f (u, v)
vt = D2
sv− ∂t (ln(h1h2))v+g(u, v). (17)

In both cases the components of the kintetic part, f (u, v) and g(u, v),
are given by nonlinear function of the morphogen concentrations.
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2.2.1. The Nondimensional Form of the Model

We can carry out the standard procedure to write down the equations
in nondimensional form (see [20]) and obtain:

ut = d

(σs)2

(
uss − σss

σs
us

)
− σst

σs
u+ γ̃ f (u, v)

vt = 1
(σs)2

(
vss − σss

σs
vs

)
− σst

σs
v+ γ̃ g(u, v), (18)

for one-dimension. Analogously, in two dimensions

ut = d

h1h2

[(
h2

h1
uζ

)
ζ

+
(
h1

h2
uη

)
η

]
− ∂t (ln(h1h2))u+ γ̃ f (u, v)

vt = 1
h1h2

[(
h2

h1
vζ

)
ζ

+
(
h1

h2
vη

)
η

]
− ∂t (ln(h1h2))v+ γ̃ g(u, v)

(19)

where d=D1/D2 is the ratio of the diffusion coefficients and the param-
eter γ̃ is similar to the one defined by Arcuri and Murray [2] and by
Kondo and Asai in [16]. In their work, the time-dependence of the grow-
ing domain was included explicitly in this parameter. Recently Crampin
et al. [10] defined a time-dependent γ̃ using a growth function for a
one-dimensional domain; in their work the coefficients of diffusivity are
affected by a factor 1/(γ̃ (t))2. Our model is a generalization of this par-
ticular case. We drop the time dependence of γ̃ since it can be expressed
via the quantities σ−2

s and (h1h2)
−1 affecting the coefficients of diffusivity,

which also include geometrical effects. In what follows, γ̃ is the constant
appearing above and represents the relative strengths of the reaction terms.
Natural questions arise about the effects of the new dilution and advection
terms on diffusion-driven instability. In particular we conjecture that the
effective space–time varying diffusion coefficients play an important role in
both the emergence and the selection of patterns. Linear stability analysis
of this system is one of the new open problems to be tackled.

2.2.2. Isotropic Growth

We begin with the simplifying hypothesis of isotropic growth. By this,
we mean that the growth of the curve or surface takes place in the same
proportion in all directions as time increases. In mathematical terms, this
means that the growing manifold can be parametrized as follows:

X(s, t)=ρ(t)X0(s), in one dimension, (20)

X(ζ, η, t)=ρ(t)X0(ζ, η), in two dimensions. (21)
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This assumption seems natural in physical applications and it simplifies
our analysis. Here X0 is a fixed two-dimensional (surface) or one- dimen-
sional (curve) manifold. The growth function ρ(t) satisfies our previous
regularity assumptions and is constrained to ρ(0)= 1 and ρ̇(t)> 0 for all
t . In this way the effects of curvature and growth can be uncoupled and
studied separately. For instance, take the hypothesis of isotropic growth in
one dimension. If we denote ˙:= d/dt, ′ := d/ds, and σ(s)= ∫ s

0 |X′
0(ξ)|dξ

(the arc length of the “fixed” curve X0(s)), then Eq. (18) clearly take the
form

ut = d

ρ2σ ′2

(
uss − σ ′′

σ ′ us
)

− ρ̇

ρ
u+ γ̃ f (u, v)

vt = 1
ρ2σ ′2

(
vss − σ ′′

σ ′ vs
)

− ρ̇

ρ
v+ γ̃ g(u, v). (22)

Additionally we have the relations σ ′ = |X′
0|, σ ′′ = (X′

0 ·X′′
0)/|X′

0|. Notice
that the arc length satisfies σ̇ >0 for all s. If we are considering a growth
function such that there is local expansion everywhere, then σ ′ � 1. Thus,
our equations will be completely determined as long as we provide both
the growth function ρ and the “steady” curve X0(s). Although the isotro-
pic growth assumption is not always biologically appropriate, it is still con-
venient to study as it could provide some insight for pattern selection in
the most general case, and could even represent a good model for pattern
evolution on animals in which shape changes very little. In addition, it is
of intrinsic mathematical interest.

2.2.3. Diffusion Driven Instability on a Non-growing Two-Dimensional
Manifold

The fact that the diffusion, advection, and dilution terms depend on
space and also on time makes it difficult to carry out the standard stability
analysis by means of the plane wave decomposition [20]. Turing bifurca-
tion analysis starts with determining the conditions for the appearance of
a diffusion-driven instability. For simplicity and for the rest of this section
we shall assume the ρ(t)≡1, that is, no growth is considered, and conse-
quently we will take into account only geometrical effects. To make our
remarks even simpler we shall focus on the two-dimensional model and,
in addition, assume that S is a compact orientable Riemannian manifold
embedded in R3. Thus, our linearized equations arround the steady state
take the form:

wt =D�sw + γ̃ Jw, (23)
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where D is the matrix of diffusivities:

D =
(
d 0
0 1

)
,

and �s is the Laplace–Beltrami operator in S defined in Eq. (14). The
main difficulty in carry out the appropriate stability analysis is due to the
presence of transport coeffiecients, implicit in Laplace–Beltrami operator.
We define the linear operator L as

L:=D
s + γ̃ J, (24)

so that the condition for diffusion driven instability is that the eigenvalues
of L have positive real part for certain wave numbers (eigenvalues) asso-
ciated with 
s on S. We start by observing the following standard result
(see, for example [23], pp. 703–704]): The spectrum of the Laplace–Bel-
trami operator −�sf =−gji∇i∇j f on a compact orientable Riemannian
manifold S, and denoted by σ(−
s), has the following properties:

(1) σ(−
s) has no finite accumulation point and lies on the positive
real line, that is, it forms a discrete sequence 0=ν0<ν1< · · · νk <
· · · where νk →+∞ as k→∞.

(2) For each ν ∈ σ(−
s), the associated eigenspace is finite-dimen-
sional, and

(3) The eigenspaces corresponding to different eigenvalues are
orthogonal.

Hence, let us denote the set of scalar eigenfunctions of �s on S as wk,
such that

�swk =−k2wk.

Based on the analysis by Chaplain et al. [8] for the particular case of the
unit sphere, we are able to prove a more general result for certain mani-
folds, given in the following lemma.

Lemma 1. Let S be a compact orientable Riemannian manifold embed-
ded in R

3. A complex number λ ∈ C is in the spectrum of L if and only
if there exists k ∈R and a scalar eigenfunction wk of the Laplace–Beltrami
operator on S, (
swk =−k2wk), such that

det(−Dk2 + γ̃ J −λI)=0. (25)

Proof. For the “if” part, let us assume that the determinant is 0 for
some k∈R. Then take w0 ∈ker(−Dk2 + γ̃ J −λI)⊂C

2. Therefore,

(L−λI)wkw0 =wk(−Dk2 + γ̃ J −λI)w0 =0.
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The “only if” part follows by supposing that the determinant is differ-
ent from 0 for all k ∈ R and some λ ∈ C. Consider L as an operator in
L2(S,C2). L is conjugate to its Fourier transform L̂, with (L̂−λI)ŵ(k)=
(−Dk2 + γ̃ J −λJ )ŵ(k). The right hand side of the last equation is invert-
ible for all k, so we can write (L−λI)−1 as the convolution with the Fou-
rier transform of (−Dk2 + γ̃ J −λI)−1, and hence λ is in the resolvent.

The spatially uniform steady state will become unstable for suitable
spatially varying disturbances if the solution to the spectral problem Lw=
λw satisfies Re λ> 0 for some k �= 0. By the standard stability theory in
[20], Eq. (25) allows us to arrive at the conditions for diffusion driven
instability. The excited modes will be associated with the eigenfunctions of
�s on S, just as was stated by Chaplain et al. for the particular case of
the sphere. We point out that formally, the conditions are the same as for
the standard Turing instability. However, we emphasize that the geometri-
cal effects on the actual selection of modes are contained in the operator
L, via the selection of k, the wave number.

We start by examining the conditions for pattern emergence for the
case of isotropic growth. This allows us to isolate geometrical effects
from growth effects. The isotropic nondimensional model has the follow-
ing form:

ut = d

ρ(t)2
Lu− ρ̇

ρ
u+ γ̃ f (u, v)

vt = 1
ρ(t)2

Lv− ρ̇

ρ
v+ γ̃ g(u, v), (26)

where (x, t) ∈ R
p × R

+. For p= 2, L is a second-order differential spa-
tial operator which is simply the Laplace–Beltrami operator defined before
while for p = 1 it is given by Lu= (uss − (σ ′′/σ ′)us)/σ ′(s)2. Recall that
d is the ratio of diffusivities and γ̃ is the scale factor introduced in Sec-
tion 2.2.1. To complete the mathematical problem we must add certain
boundary conditions, such as Dirichlet or zero flux type (for studying
self-organization of patterns) or periodic boundary conditions (for finite
domains excluding effects on boundaries).

2.3. Examples

We now consider some concrete examples to illustrate the application
of the above ideas:

2.3.1. Typical Growth Functions

Typical growth functions ρ(t) that we will consider are:
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(a) No growth: Here ρ(t)≡1. for all t . This case reduces to Turing’s
model and serves as the “control” case to enable us to identify
the effects of domain curvature and also how pattern changes
when we do indeed impose growth.

(b) Linear growth: ρ(t) = 1 + bt , where b > 0. Although such a
growth function is probably biologically implausible, its relative
simplicity justifies its consideration as a base case.

(c) Exponential growth: ρ= exp(kt), where k > 0. This is a reason-
able growth model for the initial phases of growth of certain tis-
sues.

(d) Logistic or saturated growth: In this case the growth function is
given by

ρ(t)= exp(kt)

1+ 1
m
(exp(kt)−1)

,

where k > 0 and m> 1. Notice that ρ(0)= 1 and ρ→m> 1 as
t→∞.
In this case, growth is initially approximately exponential before
finally saturating. This is, in a phenomenological sense, a biolog-
ically reasonable growth function.

2.3.2. Typical Geometries in One-Dimension

Let us constrain ourselves to the isotropic growth assumption. In one
dimension the general model is given by Eq. (22). Hence, let us consider
the simplest domains:

(a) Straight line: After the non dimensionalization in the previous
section, we can consider the “planar” domain defined by

X0(s)=

 s0

0


 , for s ∈ [0,1]. (27)

Here σ ′ = |X′
0| = 1 and X′′

0 = 0. Thus there are no transport
terms due to curvature or other geometrical properties. There-
fore, Eq. (22) takes the form:

ut = d

ρ(t)2
uss − ρ̇

ρ
u+ γ̃ f, (28)

and similarly for the inhibitor v. This is the special case studied
by Crampin et al. [10] (compare with Eq. (20) in [10], p. 1101).
Substitution of the different growth functions leads to different
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systems of equations. Neumann boundary conditions at s = 0
and s=1 complete the mathematical problem.

(b) Ellipse: Consider the ellipse given by

X0(s)=

p cos s
q sin s

0


 , for s ∈ [0,2π ] (29)

where p and q are positive numbers. We can compute X′
0 ·X′′

0
and |X′

0|2 to arrive at

ut = d

ρ(t)2(p2 sin2 s+q2 cos2 s)

(
uss − (p2 −q2) sin(2s)

2(p2 sin2 s+q2 cos2 s)
us

)

− ρ̇
ρ
u+ γ̃ f. (30)

This example is helpful in the study of geometrical effects. The
choice of the growth function and periodic boundary conditions
completes the mathematical problem to be studied. The case of a
circular closed ring corresponds to the case p=q= 1, and since
X′

0 ·X′′
0 =0 and |X′

0|=1, we notice that we arrive at the same sys-
tem of Eq. (28) as in the straight line case. Here case, of course,
the necessary boundary conditions are periodic rather than the
usual zero flux case for the straight line domain.

(c) Parabola: Consider the open curved domain defined by

X0(s)=

 s

as2

0


 , for s ∈R. (31)

Computing σ ′(s)=
√

1+4as2, σ ′′(s)=4a2s/σ ′ we obatin

ut = d

ρ(t)2(1+4a2s2)

(
uss − 4a2s

1+4a2s2
us

)
− ρ̇

ρ
u+ γ̃ f. (32)

Any other one-dimensional domain could be treated in a similar fash-
ion.

2.3.3. Typical Geometries in Two-Dimensions

We now consider a selection of two-dimensional manifolds, which
serve as model systems for the study of the effects of curvature and shape.
We present three specific cases: a planar domain, a disk and a cone.
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(a) Planar domain: The simplest case is the one of a planar domain
which grows isotropically in time. In this case the model for the
domain is simply

X(ζ, η, t)≡ρ(t)

 ζη

0


 , (33)

and clearly the system of equations reduces to the typical reac-
tion–diffusion model in a plane with a time-varying diffusion
coefficient due to growth:

ut = d
ρ2
(uζζ +uηη)− 2ρ̇

ρ
u+ γ̃ f. (34)

When there is no growth, we obtain Turing’s original model in
two-dimensions for a planar fixed domain.

(b) Growing sphere: Consider the isotropically growing sphere with
radius ρ:

X(ζ, η, t)≡ρ(t)

 sinη cos ζ

sinη sin ζ
cosη


 , (35)

where ζ ∈ [0,2π ], η∈ [0, π ]. We have

h2
1 =|Xζ |2 =ρ2 sin2 η, h2

2 =|Xη|2 =ρ2,
h1

h2
= sinη.

Consequently, Eq. (19) take the form:

ut = d

ρ2

(
uηη+ 1

sin2 η
uζζ − cosη

sinη
un

)
− 2ρ̇
ρ
u+ γ̃ f. (36)

On account of sin2 η � 0 for η ∈ [0, π ]. we have singular effec-
tive diffusion coefficients.at the boundaries These equations have
been used for the calculations in [33], with ρ̇=0.

(c) Growing cone: To illustrate the effects of curvature we shall con-
sider the following domain:

X(ζ, η, t)≡ρ(t)

 ζ cosη
ζ sinη
aζ


 , (37)
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where ζ ∈ (0,∞), η∈ [0,2π ] and a is the aspect ratio of the cone.
Therefore,

h2
1 =|Xζ |2 = (1+a2)ρ2, h2

2 =|Xη|2 = ζ 2ρ2,
h1

h2
=
√
(1+a2)

ζ
.

Hence, the equation for one morphogen takes the form

ut = d

(1+a2)[ρ(t)]2

(
uζζ+ (1+a2)

ζ 2
uηη+1

ζ
uζ

)
−2ρ̇
ρ
u+ γ̃ f.

(38)

3. SPECIFIC MODEL

For the remainder of this paper we focus on reaction kinetics of the
model introduced in [4]. This is

f (u, v)≡αu(1− r1v2)+v(1− r2u), g(u, v)≡βv
(

1+ αr1

β
uv

)
+u(γ + r2v).

(39)

This particular kinetics was proposed because it captures many of the
mechanisms crucial in pattern generation and selection. By suitable choices
of the parameters α and β, the uniform steady state (0,0) can be driven
unstable by diffusion. Furthermore, it is known that quadratic interactions
select spot patterns, while third order terms favor the selection of stripes
[14,21]. In Eq. (39), the parameters r1 and r2 measure the strength of the
third and second order interactions, respectively.

3.1. Linear Stability Analysis for Fixed Domains

The stationary states (u∗, v∗) of the system of Eq. (39) are the inter-
section points of the nullclines

αu(1− r1v2)+v(1− r2u)=0 and βv+αr1uv2 +u(γ + r2v)=0. (40)

It is easy to show that (u∗, v∗) must satisfy the equation

v=− (α+γ )
(1+β) u, with β �=−1. (41)

Observe that, apart of the origin (u=v=0), in principle the system (39)
has two more equilibria. The abcissae of these points are the real roots of
the equation

u2
0 +bu0 + c=0,
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where

ε := (α+γ )
(1+β) , u=u0/ε, b=− r2

r1α
, and c= (γ −αβ)

αr1(1+β) .

In order to keep the analysis as simple as possible we impose the con-
dition α = −γ which, for finite values of u, implies v∗ = 0. Hence, from
the equations of the nullclines, we have γ u∗ =0, and, if we consider γ �=0,
then we have that the only finite equilibrium of the system (39) is (0,0).
We are currently studying the general case without this condition, and the
results will be presented elsewhere [17, in preparation].

The linear approximation of the kinetics in Eq. (39) around the equi-
librium (0,0) is

u̇=−γ u+v
v̇=γ u+βv, (42)

from which we have that the trace and determinant of the Jacobian matrix
are: trJ [f, g](0,0) = (β − γ ) and det J [f, g](0,0) = −γ (1 + β), respectively.
The eigenvalues of the Jacobian matrix J [f, g](0,0) are

λ1, λ2 = (β−γ )±
√
(β−γ )2 +4γ (β+1)

2
.

By using the linear approximation (42), one readily derives the usual con-
ditions under which (0,0) can exhibit a diffusiondriven instability [20,4] for
fixed domains. By choosing the appropriate parameters in the Turing space
the instability mechanism can be triggered. Now, we are going to seek the
parameter values compatible with the above conditions. Let us consider
the possibilities, depending on the sign of γ :

Case 1: γ > 0. In order to satisfy all the conditions one must
choose β such that β < γ,β <−1 and β > (D2/D1)γ > 0. There is
no value of β satisfying all these restrictions.
Case 2: γ <−1. In this case there are no values of β for which all
conditions are satisfied,
Case 3: −1<γ < 0. One can verify that the values of β for which
the above conditions in [4,20] hold are: −1<(D2/D1)γ <β <γ .

In what follows we shall fix the value of γ = −α= −0.899. Therefore, β
has to be negative and larger than −1. The previous analysis allows us
to choose suitable parameters in Turing space for which (0, 0) is linearly
unstable in the presence of diffusion, and the subsequent dynamics is gov-
erned by the full nonlinear terms, which we investigate numerically.
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4. NUMERICAL CALCULATIONS IN TWO-DIMENSIONS

Given that Crampin et al. [10] have carried out a considerable number
of numerical simulations for one-dimensional growing domains by consid-
ering different growth functions (exponential, logistic) we restrict our cal-
culations to several simple two-dimensional growing manifolds. There have
been previous numerical calculations of patterns forming in static domains
of different sizes to simulate growth [32]. This situation would correspond
to a very slow growing regime (t=ετ , with ε∼0) when the diffusion terms
are not affected by growth. In effect, in Eq. (22) ρ̇ is negligible and an
expansion of 1/ρ2 up to linear order in ετ is constant, resulting in the
usual non-growing equations and justifying the previous calculations in
very slow growing domains. In order to show simultaneously the effects
of geometry and of growth on pattern selection, we present simple numeri-
cal calculations in two-dimensional manifolds assuming a fast reaction rate
(ε= 1) and isotropic growth. For simplicity, in all the calculations shown
here we choose a linear growth function ρ(t)= 1 +bt , where b>0 and at
t = 0 it is assumed that the size is normalized. In all the calculations, the
Turing system is solved by a simple Euler method, and therefore time is
discretized, that is t=m�t , where m is an integer.

4.1. Growing Planar Domain

The simplest case is the one of a planar domain which grows isotrop-
ically in time. In this case the discretized version of the model (see [4]), in
which a finite variation of the concentrations �u and �v is calculated for
a discrete increment of time �t , can be written as

�u = [δd∇2u− δ′u+αu(1− r1v2)+v(1− r2u)]�t
�v =

[
δ∇2v− δ′v+βv(1+ αr1

β
uv)−u(α− r2v)

]
�t. (43)

where δ= δ0/ρ
2 and δ′ = 2ρ̇/ρ. Here δ conveniently sets the spatial scale

and δ0 gives the initial size of the domain. In these equations u and v rep-
resent N ×M matrices defined in a grid, and the Laplacian is discretized
in the grid with lattice sites denoted by (i, j). The form is

∇2u|(i,j)=




[ar(i, j)u(i+1, j)−u(i, j)]+
[al(i, j)u(i−1, j)−u(i, j)]+
[au(i, j)u(i, j +1)−u(i, j)]+
[ad(i, j)u(i, j −1)−u(i, j)]


 ,

where the matrix elements of ar , al, au and ad are unity except at the
boundary, where they are set equal to zero when the lattice site has no
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right(r), left(l), up(u) or down(d) neighbor, respectively. This ensures zero
flux boundary conditions, and it is equivalent to setting n̂ · ∇u= 0 at the
boundary with normal vector n̂. The initial values for the matrices are
taken as random everywhere.

In Fig. 1, typical results are shown for u, which is defined by a gray
scale in the plane. We only show one morphogen pattern in all figures,
since we verified that the concentration of v is qualitatively the same as u
with a phase shift of π . The stability of the numerical scheme used in our
simulations was analysed out in [1]. There the authors used a finite-differ-
ences scheme to solve the space discretization of their system ensuring that
the discrete intervals used in the simulations are correct. We observe that
the value b=5×10−4 was small enough to allow a fair convergence of the
patterns.

Observe that the square symmetry appears when the domain is very
small. This effect of the domain size was already observed elsewhere [3].
As the domain grows, new spots emerge in the diagonals of the lattice.
This occurs until the domain is large enough and existing spots split. This
is in agreement with former similar calculations using the Schnakenberg
model [9,18]. The final result is that for large enough domains one obtains
the commonly found hexagonal lattice. This was verified by performing a
calculation taking the last pattern as initial condition and stopping the
growth to allow the pattern to converge in a bigger lattice. The calcula-
tion was not carried out to larger sizes because the spots become of the
order of the finite spatial grid, and their resolution is not accurate.

4.2. Growing Sphere

There have been various numerical calculations in the past that deal
with a spherical domain. In particular, some of us have performed static
calculations on spheres of different sizes [33]. The simulations by Chap-
lain et al. [8] cover the case of dynamical growth. Nevertheless we must
point out that there are two main differences in their model and ours: they
do not consider the dilution term and they use the Schnakenberg kinetic
term. We do not include simulations on the sphere, since we intend to
make a more detailed comparison in a future publication.

4.3. Growing Cone

Here we consider the lateral surface of a cone in which we cut off
its base. The cone itself stands on a horizontal plane. The variables (η, ζ )
are defined as (i, j) in a M×N grid. Now, the discrete equations for our
model read exactly as in (43), except that the differential operator ∇2u has
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Figure 1. Numerical calculation in a growing square domain of N=M=48. The concentra-
tion of u is shown in a gray scale. Each one of the 50 pictures is a snap taken every 5000
time steps of �t = 0.02. The initial δ0 = 11, and the growth factor is b= 5 × 10−4. Therefore,
for the last picture in the bottom right δ=0.2956 and the final size is ρf =6.1. The parame-
ters for the system were: d=0.516, α=0.899, β=−0.91, r1 =0.5, and r2 =0.4, in order to give
a post pattern.

to be discretized according to Eq. (24) following the methodology carried
out in [1] and replaced by

Lu(i, j) = d[u(i, j +1)+u(i, j −1)−2u(i, j)]

+ (1+a2)

j2
[u(i+1, j)+u(i−1, j)−2u(i, j)]

+ 1
2j

[u(i, j +1)−u(i, j −1)], (44)

and the same for v(i, j). The effective diffusion coefficient is now

δ= δ0

(1+a2)ρ(t)2
,
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where a is the aspect ratio of the cone. For a=0 one has a disk, for a=1
the cone has a height of the same size as the radius of its base, and for
a > 1 the cone is acute. Care has to be taken to perform the calculation
away from j = 0 to avoid singularities, this means that the cone is really
truncated at its apex, by removing a very small piece. The boundary con-
ditions have to be periodic in the angular variable η, and zero flux at the
bottom of the cone (j =M). At the minimum value of j the boundary
condition is that the functions at a given point i have the same value as
that at the corresponding point i+π , so continuity at the singular point
is fulfilled. One of the things we noticed here is that the selected pattern
on the surface of the cone strongly depends on its aspect ratio. Thus, it is
worth presenting several typical cases.

4.3.1. The Disk

When a = 0, we have a disk whose radius grows continuously. Bar-
rio et al. [3] already considered a static disk embedded in a square. They
incorporate the growth of the disk not as part of an inner dynamics but
by simply carrying out the numerical simulations at different increasing
radius. We used their static calculations to check that the previous results
are reproduced.

In the present case, when the growth rate is comparable with the reac-
tion times, the patterns have not enough time to become stable, and one
obtains a series of transient patterns whose symmetry and form changes
continuously. However, the series of centrosymmetric patterns observed in
the static (or slow growth) regime are still recognizable [3].

In Fig. 2 we show a series of patterns of u obtained numerically
in a grid of M = 48 and N = 24 starting with a size given by δ0 = 0.8.
Observe that for a very small size one obtains only a central spot, and
as the domain grows centered patterns with various symmetries, notably
five, emerge. The spot pattern is not as regular as in the static calcula-
tions, because there is no time for a given structure to settle. However,
several centrosymmetric patterns appear as the disk grows, notably with
five-, six- and seven-fold symmetry, respectively, in agreement with previ-
ous static calculations [1].

4.3.2. Symmetric Cone

We now consider the case where the radius of the base is equal to the
height. With no loss of generality, we took R=a=1. Numerical results are
illustrated in Fig. 3 where we show the distribution of the morphogen u

on the surface of the cone. We include the top views at the right of each
pattern to facilitate the appreciation of the symmetry.
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Figure 2. Numerical calculation showing the concentration of u in a growing disk obtained
for the equations for the cone with a = 0. Each picture is taken every 10 000 time steps of
�t = 0.01. The growing factor is again b= 3.5 × 10−4. The parameters for the system were
kept as in the former figure.

Observe that as the cone grows several centrosymmetric patterns arise,
notably with three and five fold . When the cone is large these symmetries
are lost and lines of spots start appearing.

4.3.3. Acute Cone

Here we show that peculiar patterns arise when the aspect ratio of
the cone changes. For instance, Fig. 4 shows a calculation on a cone with
aspect ratio a= 2. The parameters are exactly as in Fig. 3. One remark-
able feature revealed by the simulations is the evolution from rings on the
tip to spots.

When the cone is bigger the annular stripes disappear and the spots
align in a sort of helicoidal fashion that resembles pine cones. This is a
beautiful example of a pattern modified by the curvature of the surface.

To illustrate this point better we show a numerical calculation using
a= 3 in Fig. 5. Here we have also changed some of the parameters: the
initial size is given by δ0 = 1.8 (smaller starting size than before), the
growth rate was somewhat faster, b = 5 × 10−4, and each panel shows
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Figure 3. Series of patterns obtained on a cone of aspect ratio one (a = 1) with zero-flux
boundary conditions at the bottom. The values of the parameters are exactly as in the previ-
ous figure except that each snap is taken every 100 000 time steps. To the right of each cone
there is a top view to facilitate the recognition of the pattern angular symmetry.

Figure 4. Numerical calculation on a growing cone with a= 2. Each picture is taken every
100 000 time steps of �t = 0.01. The parameters for the system were kept as in the former
figure. Observe the alignment of the spots and the appearance of vertical stripes for large
cones.
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Figure 5. Numerical calculation on a growing cone with a= 3. The parameters for the sys-
tem are given in the text. Observe that vertical stripes form more easily in this case, com-
pared to Fig. 4.

results every 100 000 time steps, thus the final linear scale was 3.15 and
the final δ=0.1814.

These patterns resemble very much the ones observed on the tails of
reptilians, like lizards, where it is seen that a pattern of aligned spots and
stripes coexist. The important feature that these calculations show is that
the interplay of curvature and growth rate of the domain dictate the final
selection of the pattern, without having to invoke a variation of the diffu-
sion rate or of the non-linear parameters (r1 and r2). They also show that
transient patterns may be important when considering pattern formation
in a growing animal.

4.3.4. Static Cone

For comparison purposes, we carry out some numerical calculations
on non-growing cones until they converged to a stable pattern. We took
two cases corresponding to cones of different size and the same aspect
ratio from the transient patterns already shown.

In Fig. 6 we show the comparison of a pattern obtained by growing
the cone from δ= 1.8 to a final size of δ= 0.2363 using a grid of N = 24
and M = 48 and a growth rate b= 5 × 10−4 and we compare it with the
pattern obtained in a cone of constant size δ= 0.2363. Observe that the
alignment of spots caused by the domain growth is lost in the static pat-
tern. The same effect is even more noticeable in a similar calculation on
a cone of larger size, shown in Fig. 7. This shows that transient processes
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Figure 6. (a) Final steady state of the pattern shown in the bottom right of Fig. 5. (b) Pat-
tern obtained in a cone of constant size equal to the one in (a). Observe that the alignment
of spots is lost in the static calculation.

Figure 7. As Fig. 6, except that the final size of the cone is larger, and the grid used was
N =48 and M=96. The time step was adjusted to �t=0.002 to assure convergence.

can play an important role in selecting the pattern of a growing animal,
since the stable pattern has no time to appear.
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5. CONCLUSIONS AND DISCUSSION

We have presented a general theoretical framework to investigate the
role of curvature and growth of one- and two-dimensional domains in
pattern formation and selection via the Turing instability. The theory can
be applied to other space-time dynamics not presented here. The formal
bifurcation analysis (local and global) for our full reactive–diffusive mod-
els which take into account the dynamics of the one- or two-dimensional
domain embedded in R3 is an important challenge from both theoretical
and applied points of view. In fact, the corresponding Turing bifurcation
analysis for these growing domains still as an unsolved problem which we
are presently pursiung. (We are presently carrying out some analysis of
these matters.)We presented some specific examples with explicit forms of
the reaction equations, restricting ourselves to the case of isotropic growth.
In this case, our equations allow a separate examination of the geometri-
cal spatial effects and of the ones due to growth.

It is well documented (see [6]) that there are individuals which grow
in a proportional manner. This means that all macroscopic characteristic
lengths (length, width, height) keep the same proportion as the individual
develops. The result of this is that one adult looks like an amplification
in three dimensions of its juvenile stage. Equivalently, its contour at later
stages is a homogeneous magnification of that at earlier stages. This is iso-
metric growth which occurs in some fishes like ‘Cichlasoma (Nandopsis) ur-
ophthalmus’ (Günther 1862). Meanwhile there are other organisms which
grow in such a way that they do not preserve the proportions between
their different linear typical dimensions. This is allometric growth (see
[25]). Pattern selection could crucially depend on the two types of growth.
For example, Crampin et al. [11] considered a one-dimensional growing
domain which grows in a different manner in certain subdomains. One of
the challenges in this area is the incorporation of allometric growth. It
is also interesting to point out that seasonal effects on the growth of an
organism can be incorporated into the model.

We also presented several numerical calculations in growing domains
to illustrate the new features that are due to growth. We have restricted
our examples to a linear growing function, in order to keep uniformity
and for the sake of simplicity and comparison, but it is clear that other
simple functions could be easily implemented in a numerical program,
according to the specific application of interest. The important result ren-
dered by these calculations is that new patterns can be robustly selected
due to the effect of either curvature and/or growth, which would be
unstable otherwise.
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In particular, the calculations on the cone show a peculiar alignment
of spots, closely resembling the actual array found in reptilian tails and
in pine acorns. We are convinced that transient patterns during domain
growth are important in simulating living organisms. The analysis of pat-
tern formation, selection, and stabilization on domains with geometries
resembling the actual shape of animal bodies, is a difficult task and this
provides challenging work for the future.
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